LETTERS 2012 Vol. 14, No. 7 1880–1883

ORGANIC

Enantioselective Synthesis of (+)-Crocacin C. An Example of a Highly Challenging Mismatched Double Asymmetric δ -Stannylcrotylboration Reaction

Ming Chen and William R. Roush*

Department of Chemistry, Scripps Florida, Jupiter, Florida 33458, United States

roush@scripps.edu

Received February 25, 2012

A concise, enantioselective synthesis of (+)-crocacin C is described, featuring a highly diastereoselective mismatched double asymmetric δ -stannylcrotylboration of the stereochemically demanding chiral aldehyde 9 with the bifunctional crotylborane reagent (*S*)-*E*-10. The total synthesis of (+)-crocacin C was accomplished in seven steps (longest linear sequence) starting from commercially available precursors.

The crocacins A–D are a family of natural products isolated from *Chondromyces crocatus* and *Chondromyces pediulatus* (Figure 1).¹ Crocacins A, B, and D are dipeptides of glycine and a 6-aminohexenoic or a 6-aminohexadienoic acid with a polyketide-derived acyl residue connected to the nitrogen atom, while crocacin C is a primary amide of the acyl polyketide fragment. Initial biological studies revealed that the crocacins display antifungal and cytotoxic activities. Compared to crocacins A–C, only crocacin D exhibited potent activity against *Saccharomyces cerevisiae* with a MIC of 1.4 ng/mL, which indicates that the dipeptide moiety of the crocacins is crucial for their biological properties.¹ Recent crystallographic data suggest that the crocacins are a new class of inhibitors of the cytochrome bc_1 complex.²

A characteristic structural feature of crocacin C is the *anti,anti*-dipropionate stereotriad (highlighted in yellow in Figure 2). It is evident that a mismatched double asymmetric crotylation reaction of an aldehyde substrate, such as **2**, with a chiral crotylmetal reagent would be a direct, logical approach to this structural motif.^{3,4}

However, an attempted^{5f} mismatched double asymmetric crotylboration of aldehyde **2** with crotylboronate **5** provided a 1:4 diastereomeric mixture in 60% yield, favoring the undesired 3,4-*anti*-4,5-*syn*-stereotriad **4** (Figure 2). Attempted crotylboration of aldehyde **2** using Brown's crotylborane reagent **6** gave a 1:3 mixture of diastereomers, again favoring the undesired diastereomer **4**.

^{(1) (}a) Kunze, B.; Jansen, R.; Hofle, G.; Reichenbach, H. J. Antibiot. **1994**, 47, 881. (b) Jansen, R.; Washausen, P.; Kunze, B.; Reichenbach, H.; Hofle, G. Eur. J. Org. Chem. **1999**, 1085.

⁽²⁾ Crowley, P. J.; Berry, E. A.; Cromarti, T.; Daldal, F.; Godfrey, C. R. A.; Lee, D.-W.; Phillips, J. E.; Taylor, A.; Viner, R. *Bioorg. Med. Chem.* **2008**, *16*, 10345.

⁽³⁾ Reviews of reactions of carbonyl compounds with crotylmetal reagents: (a) Roush, W. R. In *Comprehensive Organic Synthesis*; Trost, B. M., Ed.; Pergamon Press: Oxford, 1991; Vol. 2, p 1. (b) Yamamoto, Y.; Asao, N. *Chem. Rev.* **1993**, *93*, 2207. (c) Denmark, S. E.; Almstead, N. G. In *Modern Carbonyl Chemistry*; Otera, J., Ed.; Wiley-VCH: Weinheim, 2000; p 299. (d) Denmark, S. E.; Fu, J. *Chem. Rev.* **2003**, *103*, 2763. (e) Lachance, H.; Hall, D. G. *Org. React.* **2008**, *73*, 1.

⁽⁴⁾ Masamune, S.; Choy, W.; Petersen, J. S.; Sita, L. R. Angew. Chem., Int. Ed. Engl. 1985, 24, 1.

Figure 1. Structures of crocacins A–D.

Owing to the inability to directly access this requisite *anti*, *anti*-stereotriad (e.g., **3**), the central theme of multiple approaches developed for the synthesis of crocacin $C^{5,6}$ utilize indirect methods⁷ to prepare the *anti*,*anti*-stereotriad with high diastereoselectivity. Strategies involving aldol reactions, ^{5a,e-h} epoxide ring-opening reactions, ^{5b-d} or the desymmetrization of *meso* cyclic precursors^{5i,6d} have been adopted to access the *anti*,*anti*-stereotriad units of crocacin C precursors.

We recently described⁸ highly diastereoselective syntheses of *anti,anti*-stereotriads using mismatched double asymmetric δ -stannylcrotylboration reactions of chiral aldehydes with crotylborane reagent (*S*)-*E*-**10**⁹ (Figure 3). Because it has been reported that reagents such as **5** and **6** are incapable of overriding the intrinsic diastereofacial preference of aldehyde **2** (Figure 2), we were intrigued

(6) For formal syntheses of crocacin C, see: (a) Gurjar, M. K.; Khaladkar, T. P.; Borhade, R. G.; Murugan, A. *Tetrahedron Lett.* 2003, 44, 5183. (b) Raghavan, S.; Reddy, S. R. *Tetrahedron Lett.* 2004, 45, 5593. (c) Besev, M.; Brehm, C.; Fürstner, A. *Collect. Czech. Chem. Commun.* 2005, 70, 1696. (d) Yadav, J. S.; Reddy, P. V.; Chandraiah, L. *Tetrahedron Lett.* 2007, 48, 145. (e) Yadav, J. S.; Reddy, M. S.; Rao, P. P.; Prasad, A. R. *Synlett* 2007, 2049.

(7) For reviews of methods commonly used to synthesize the *anti, anti* dipropionate stereotriad: (a) Hoffmann, R. W. *Angew. Chem., Int. Ed. Engl.* **1987**, *26*, 489. (b) Hoffmann, R. W.; Dahmann, G.; Andersen, M. W. Synthesis **1994**, 629.

(8) Chen, M.; Roush, W. R. J. Am. Chem. Soc. 2012, 134, 3925.

(9) (a) Chen, M.; Roush, W. R. J. Am. Chem. Soc. **2011**, 133, 5744. For synthetic applications of reagent (S)-E-**10**, see: (b) Sun, H.; Abbott, J. R.; Roush, W. R. Org. Lett. **2011**, 13, 2734. (c) Yin, M.; Roush, W. R. Tetrahedron **2011**, 67, 10274. (d) Chen, M.; Roush, W. R. Org. Lett. **2012**, 14, 426.

Figure 2. Attempted mismatched double asymmetric crotylboration reactions of aldehyde 2 with reagents 5 and 6 for synthesis of the *anti,anti*-stereotriad of crocacin C.^{Sf}

whether our new reagent (*S*)-*E*-10 could be adopted for synthesis of the *anti,anti*-stereotriad unit in 7. Furthermore, the vinylstannane unit in 7 can be used in subsequent C–C bond forming reactions, for example, Stille¹⁰ coupling with vinyl iodide $8^{.5a}$ We chose crocacin C as the target molecule for this study because it can be converted into other members of the crocacin family using a Cucatalyzed coupling reaction as demonstrated by Dias and co-workers.¹¹

Figure 3. Crocacin C, retrosynthetic analysis.

Starting from acyl oxazolidinone **11**, aldehyde **9** was obtained in four steps according to known procedures (Scheme 1).¹² Addition of aldehyde **9** to the crotylborane reagent (*S*)-*E*-**10**, generated from the enantioselective and

⁽⁵⁾ For total syntheses of crocacin C, see: (a) Feutrill, J. T.; Lilly, M. J; Rizzacasa, M. A. Org. Lett. 2000, 2, 3365. (b) Chakraborty, T. K.; Jayaprakash, S. Tetrahedron Lett. 2001, 42, 497. (c) Chakraborty, T. K.; Jayaprakash, S.; Laxman, P. Tetrahedron 2001, 57, 9461. (d) Dias, L. C.; de Oliveira, L. G. Org. Lett. 2001, 3, 3951. (e) Sirasani, G.; Paul, T.; Andrade, R. B. J. Org. Chem. 2008, 73, 6386. (f) Sirasani, G.; Paul, T.; Burke, M. D. J. Am. Chem. Soc. 2008, 130, 14084. (h) Feutrill, J. T.; Lilly, M. J.; White, J. M.; Rizzacasa, M. A. Tetrahedron 2008, 64, 4880. (i) Candy, M.; Audran, G.; Bienayme, H.; Bressy, C.; Pons, J.-M. J. Org. Chem. 2010, 75, 1354.

^{(10) (}a) Stille, J. K. Angew. Chem., Int. Ed. Engl. 1986, 25, 508. (b) Farina, V.; Krishnamurthy, V.; Scott, W. J. Org. React. 1997, 50, 1.

⁽¹¹⁾ Dias, L. C.; de Oliveira, L. G.; Vilcachagua, J. D.; Nigsch, F. J. Org. Chem. 2005, 70, 2225.

Scheme 1. Total Synthesis of (+)-Crocacin C (1)

enantioconvergent hydroboration of racemic allenylstannane (\pm) -16¹³ with (^dIpc)₂BH, at -78 °C followed by warming the reaction mixture to ambient temperature for a 24 h reaction period provided the targeted *anti,anti*-stereotriad 15 in 61% yield and with > 15:1 diastereoselectivity.

Methylation of the secondary alcohol of **15** with $Me_3O \cdot BF_4$ and Proton Sponge provided methyl ether 7^{5a} in 88% yield. A Pd(0)-catalyzed Stille coupling^{5a,10} of vinylstannane 7 with vinyl iodide 8^{5a} gave (+)-crocacin C (1) in seven steps (longest linear sequence) and in 21% overall yield from **11** without any protecting group manipulations. The spectroscopic data (¹H NMR, ¹³C NMR, $[\alpha]_D$) of synthetic (+)-crocacin C were in excellent agreement with the data previously reported for the natural product.^{1,5}

The intrinsic diastereofacial preference of aldehyde **9** was assessed by using an anti-crotylboration reaction with the achiral pinacol (*E*)-crotylboronate **17** (Scheme 2). This reaction provided an 18:1 mixture of 3,4-*anti*-4,5-*syn*-stereotriad **18** and *anti,anti*-stereotriad **19** in 77% yield, with **18** as the major product (as expected^{3,14}). In contrast, the mismatched double asymmetric δ -stannylcrotylboration of aldehyde **9** with (*S*)-*E*-**10** provided the *anti,anti*-stereotriad **15** with > 15:1 diastereoselectivity. No other crotylation diastereomers were observed in the reaction mixture. Protodestannylation of **15** under acidic conditions (TsOH•H₂O) provided alcohol **19** in 87% yield, which matched the minor isomer obtained from crotylboration of **9** with achiral crotylboronate **17**.

The mismatched double asymmetric δ -stannylcrotylboration of **9** with (*S*)-*E*-**10** thus represents yet another case⁸ where a significant intrinsic diastereofacial barrier, as

presented by chiral aldehyde 9, is overridden by the chiral reagent (S)-E-10. The free energy contribution of reagent (S)-E-10 (i.e., the enantioselectivity of the reagent expressed in energetic terms) necessary to override the 18:1 intrinsic diastereofacial preference of 9 and to generate homoallylic alcohol 15 with > 15:1 mismatched diastereoselectivity is \geq 3.3 kcal/mol (reaction at 23 °C). The exceptional enantioselectivity of (S)-E-10 defines a new standard of excellence that all future methodological studies on enantioselective crotylboration or crotylmetal–carbonyl addition reactions should be judged against.

In conclusion, the total synthesis of (+)-crocacin C (1) was completed in seven steps (longest linear sequence), which represents the shortest synthesis of 1 reported to date. Most importantly, the mismatched double asymmetric δ -stannylcrotylboration of aldehyde 9, with a significant 18:1 intrinsic diastereofacial preference, was achieved with exceptional selectivity (>15:1) by using the crotylborane reagent (*S*)-*E*-10. The vinylstannane unit in the derived *anti,anti*-stereotriad 15 facilitates the subsequent Stille reaction that was used to complete this short synthesis of crocacin C. Other applications of reagent

⁽¹²⁾ Evans, D. A.; Miller, S. J.; Ennis, M. D. J. Org. Chem. 1993, 58, 471.

⁽¹³⁾ Racemic allenylstannane (\pm) -16 is prepared in two steps from commercially available (\pm) -3-butyn-2-ol using the route described for (M)-16 and (P)-16. See: (a) Marshall, J. A.; Lu, Z.-H.; Johns, B. A. J. Org. Chem. 1998, 63, 817. (b) Marshall, J. A.; Chobanian, H. Org. Synth. 2005, 82, 43.

⁽¹⁴⁾ Hoffmann, R. W.; Weidmann, U. Chem. Ber. 1985, 118, 3966.

(S)-E-10 in the synthesis of biologically active natural products will be reported in due course.

Acknowledgment. Financial support provided by the National Institutes of Health (GM038436) and Eli Lilly (for a predoctoral fellowship to M.C.) is gratefully acknowledged.

Supporting Information Available. Experimental procedures and spectroscopic data for all new compounds. This material is available free of charge via the Internet at http://pubs.acs.org.

The authors declare no competing financial interest.