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ABSTRACT

A concise, enantioselective synthesis of (þ)-crocacin C is described, featuring a highly diastereoselective mismatched double asymmetric
δ-stannylcrotylboration of the stereochemically demanding chiral aldehyde 9 with the bifunctional crotylborane reagent (S)-E-10. The total
synthesis of (þ)-crocacin C was accomplished in seven steps (longest linear sequence) starting from commercially available precursors.

The crocacins A�D are a family of natural products
isolated from Chondromyces crocatus and Chondromyces
pediulatus (Figure 1).1 Crocacins A, B, and D are dipep-
tides of glycine and a 6-aminohexenoic or a 6-aminohex-
adienoic acid with a polyketide-derived acyl residue
connected to the nitrogen atom, while crocacin C is a
primary amide of the acyl polyketide fragment. Initial
biological studies revealed that the crocacins display anti-
fungal and cytotoxic activities. Compared to crocacins
A�C, only crocacin D exhibited potent activity against
Saccharomyces cerevisiaewith aMIC of 1.4 ng/mL, which
indicates that the dipeptide moiety of the crocacins is
crucial for their biological properties.1 Recent crystallo-
graphic data suggest that the crocacins are a new class of
inhibitors of the cytochrome bc1 complex.2

A characteristic structural feature of crocacin C is the
anti,anti-dipropionate stereotriad (highlighted in yellow in
Figure 2). It is evident that a mismatched double asym-
metric crotylation reaction of an aldehyde substrate, such
as 2, with a chiral crotylmetal reagent would be a direct,
logical approach to this structural motif.3,4

However, an attempted5f mismatched double asym-
metric crotylboration of aldehyde 2 with crotylboronate
5 provided a 1:4 diastereomeric mixture in 60% yield,
favoring the undesired 3,4-anti-4,5-syn-stereotriad 4
(Figure 2). Attempted crotylboration of aldehyde 2 using
Brown’s crotylborane reagent 6 gave a 1:3 mixture of
diastereomers, again favoring the undesired diastereomer 4.
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Owing to the inability to directly access this requisite anti,
anti-stereotriad (e.g., 3), the central theme of multiple
approaches developed for the synthesis of crocacin C5,6

utilize indirect methods7 to prepare the anti,anti-stereotriad
with high diastereoselectivity. Strategies involving aldol
reactions,5a,e�h epoxide ring-opening reactions,5b�d or the
desymmetrization of meso cyclic precursors5i,6d have been
adopted to access the anti,anti-stereotriad units of crocacin
C precursors.
We recently described8 highly diastereoselective synthe-

ses of anti,anti-stereotriads using mismatched double
asymmetric δ-stannylcrotylboration reactions of chiral
aldehydes with crotylborane reagent (S)-E-109 (Figure 3).
Because it has been reported that reagents such as 5 and 6
are incapable of overriding the intrinsic diastereofacial
preference of aldehyde 2 (Figure 2), we were intrigued

whether our new reagent (S)-E-10 could be adopted for
synthesis of the anti,anti-stereotriad unit in 7. Further-
more, the vinylstannane unit in 7 can be used in subsequent
C�C bond forming reactions, for example, Stille10 cou-
pling with vinyl iodide 8.5a We chose crocacin C as the
target molecule for this study because it can be converted
into other members of the crocacin family using a Cu-
catalyzed coupling reaction as demonstrated by Dias and
co-workers.11

Starting from acyl oxazolidinone 11, aldehyde 9 was
obtained in four steps according to known procedures
(Scheme 1).12 Addition of aldehyde 9 to the crotylborane
reagent (S)-E-10, generated from the enantioselective and

Figure 1. Structures of crocacins A�D.

Figure 2. Attempted mismatched double asymmetric crotyl-
boration reactions of aldehyde 2 with reagents 5 and 6 for
synthesis of the anti,anti-stereotriad of crocacin C.5f

Figure 3. Crocacin C, retrosynthetic analysis.
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enantioconvergent hydroborationof racemic allenylstannane
(()-1613 with (dIpc)2BH, at�78 �C followed bywarming the
reaction mixture to ambient temperature for a 24 h reaction
period provided the targeted anti,anti-stereotriad 15 in 61%
yield and with >15:1 diastereoselectivity.
Methylation of the secondary alcohol of 15 with

Me3O•BF4 and Proton Sponge provided methyl ether 75a

in 88% yield. A Pd(0)-catalyzed Stille coupling5a,10 of
vinylstannane 7 with vinyl iodide 85a gave (þ)-crocacin C
(1) in seven steps (longest linear sequence) and in 21%
overall yield from 11without any protecting groupmanip-
ulations. The spectroscopic data (1H NMR, 13C NMR,
[R]D) of synthetic (þ)-crocacin C were in excellent agree-
ment with the data previously reported for the natural
product.1,5

The intrinsic diastereofacial preference of aldehyde 9
was assessed by using an anti-crotylboration reaction with
the achiral pinacol (E)-crotylboronate 17 (Scheme 2). This
reaction provided an 18:1 mixture of 3,4-anti-4,5-syn-
stereotriad 18 and anti,anti-stereotriad 19 in 77% yield,
with 18 as the major product (as expected3,14). In contrast,
the mismatched double asymmetric δ-stannylcrotylbora-
tion of aldehyde 9 with (S)-E-10 provided the anti,anti-
stereotriad 15 with >15:1 diastereoselectivity. No other
crotylation diastereomers were observed in the reaction
mixture. Protodestannylation of 15 under acidic condi-
tions (TsOH•H2O) provided alcohol 19 in 87% yield,
which matched the minor isomer obtained from crotyl-
boration of 9 with achiral crotylboronate 17.
The mismatched double asymmetric δ-stannylcrotyl-

boration of 9 with (S)-E-10 thus represents yet another
case8where a significant intrinsic diastereofacial barrier, as

presented by chiral aldehyde 9, is overridden by the chiral
reagent (S)-E-10. The free energy contribution of reagent
(S)-E-10 (i.e., the enantioselectivity of the reagent ex-
pressed in energetic terms) necessary to override the 18:1
intrinsic diastereofacial preference of 9 and to generate
homoallylic alcohol 15 with >15:1 mismatched diaster-
eoselectivity is g3.3 kcal/mol (reaction at 23 �C). The
exceptional enantioselectivity of (S)-E-10 defines a new
standard of excellence that all future methodological
studies on enantioselective crotylboration or crotylmetal�
carbonyl addition reactions should be judged against.
In conclusion, the total synthesis of (þ)-crocacin C (1)

was completed in seven steps (longest linear sequence),
which represents the shortest synthesis of 1 reported to
date. Most importantly, the mismatched double asym-
metric δ-stannylcrotylboration of aldehyde 9, with a sign-
ficant 18:1 intrinsic diastereofacial preference, was
achieved with exceptional selectivity (>15:1) by using
the crotylborane reagent (S)-E-10. The vinylstannane unit
in the derived anti,anti-stereotriad 15 facilitates the sub-
sequent Stille reaction that was used to complete this short
synthesis of crocacin C. Other applications of reagent

Scheme 1. Total Synthesis of (þ)�Crocacin C (1)

Scheme 2. Crotylboration Studies of Aldehyde 9
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(S)-E-10 in the synthesis of biologically active natural
products will be reported in due course.
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